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Quasi-modes in boundary-layer-type flows.
Part 1. Inviscid two-dimensional spatially

harmonic perturbations
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The work, being the first in a series concerned with the evolution of small pertur-
bations in shear flows, studies the linear initial-value problem for inviscid spatially
harmonic perturbations of two-dimensional shear flows of boundary-layer type with-
out inflection points. Of main interest are the perturbations of wavelengths 2π/k
long compared to the boundary-layer thickness H , kH = ε � 1. By means of an
asymptotic expansion, based on the smallness of ε, we show that for a generic initial
perturbation there is a long time interval of duration ∼ ε−3 ln(1/ε), where the per-
turbation representing an aggregate of continuous spectrum modes of the Rayleigh
equation behaves as if it were a single discrete spectrum mode having no singularity
to the leading order. Following Briggs et al. (1970), who introduced the concept of
decaying wave-like perturbations due to the presence of the ‘Landau pole’ into hydro-
dynamics, we call this object a quasi-mode. We trace analytically how the quasi-mode
contribution to the entire perturbation field evolves for different field characteristics.
We find that over O(ε−3 ln(1/ε)) time interval, the quasi-mode dominates the velocity
field. In particular, over this interval the share of the perturbation energy contained
in the quasi-mode is very close to 1, with the discrepancy in the generic case being
O(ε4) (O(ε6) for the Blasius flow). The mode is weakly decaying, as exp(−ε3t). At
larger times the quasi-mode ceases to dominate in the perturbation field and the per-
turbation decay law switches to the classical t−2. By definition, the quasi-modes are
singular in a critical layer; however, we show that in our context their singularity does
not appear in the leading order. From the physical viewpoint, the presence of a small
jump in the higher orders has little significance to the manner in which perturbations
of the flow can participate in linear and nonlinear resonant interactions. Since we
have established that the decay rate of the quasi-modes sharply increases with the
increase of the wavenumber, one of the major conjectures of the analysis is that the
long-wave components prevail in the large-time asymptotics of a wide class of initial
perturbations, not necessarily the predominantly long-wave perturbations. Thus, the
explicit expressions derived in the long-wave approximation describe the asymptotics
of a much wider class of initial conditions than might have been anticipated. The
concept of quasi-modes also enables us to shed new light on the foundations of the
method of piecewise linear approximations widely used in hydrodynamics.

† Present address: Department of Mathematics, Keele University, Keele, ST5 5BG, UK.



134 V. I. Shrira and I. A. Sazonov

1. Introduction
Dynamics of small perturbations in shear flows belongs to one of the classical and

the most studied subjects in fluid mechanics. Indeed, there is an impressive list of
achievements summarized in numerous monographs and textbooks (e.g. Lin 1955;
Chandrasekhar 1981; Drazin & Reid 1981; Craik 1985; Schmidt & Henningson 2001).
However, even for the simplest plane parallel flows of uniform inviscid fluid, there
are still important open questions which have not so far received the attention they
merit. Evolution of infinitesimal perturbations in shear flows can always be naturally
described in terms of wavelike normal modes (e.g. Lin 1955; Drazin & Reid 1981)
and attention has been focused mainly upon the search for and analysis of linearly
unstable eigen modes. The existence of such modes in the case of plane parallel shear
flows of homogeneous fluid is determined by the famous Rayleigh theorem which
requires for instability the presence of inflection points in the basic flow profile. When
linearly unstable modes exist, they eventually prevail in the solution of linear and
nonlinear initial problems, whatever the initial conditions. The situation is much less
obvious when there are no linearly unstable modes. Remaining within the framework
of the normal mode paradigm, strictly speaking, we should deal with a continuum
of modes of continuous spectrum. The eigenmodes of the continuous spectrum,
sometimes called Van Kampen–Case waves, are singular, exhibiting a logarithmic
and pole-like singularity (e.g. Drazin & Reid 1981; Craik 1985; Kelbert & Sazonov
1996). Since, on the one hand, it has been established that any initial perturbation
composed of such modes decays at large times as t−2 (Case 1960; Dickey 1960;
Maslowe 1981) and, on the other hand, owing to the formidable technical difficulties
in analysing evolutionary problems in terms of such singular modes, there has been
little progress for shear flows without inflection points in the general problem setting.

In parallel, an initially very remote line of research was initiated by the classical
work by Landau (1946), where it was shown how interaction of an electromagnetic
wave and particles can result in wave damping or amplification. In our context, the
important point is that the damped waves can be described as the contribution to
a pole (the Landau pole) lying on a appropriately defined Riemann surface. The
concept of the so-called Landau damping became so widely used in plasma physics
that referencing to the original work soon almost disappeared there. The concept
penetrated into hydrodynamics as well, the first crucial step in this context was made
by Briggs, Daugherty & Levy (1970). Investigating a particular problem concerned
with cross-field electron beams which proves to be mathematically equivalent to the
Rayleigh equation for rotating inviscid shear flows, they found what happens to a
discrete spectrum mode solution corresponding to a rotating basic shear flow with a
break, if the break is slightly smoothed. Although the work was addressing a specific
hydrodynamic problem, the conceptual importance of the results goes far beyond
it. Briggs et al. (1970) seem to be the first to reveal deep mathematical similarity
between the wave–particle interaction and the wave–fluid interaction with the waves
of continuous spectrum playing the role of the particles. They demonstrated how to
find the pole-like singularities similar to the ‘Landau pole’ by appropriate analytical
continuation and described the essence of the specific wave-like motions due to
the pole contribution. These motions, for which the term quasi-modes was coined,
being distinct from the ‘true’ eigenmodes represent an aggregate of the continuous
spectrum modes and manifest themselves as decaying waves characterized by jumps
in the velocity. It was suggested that the quasi-modes with a small decay rate can
be destabilized by an external perturbation and thus turn into growing true modes.
It was conjectured that even the decaying quasi-modes ought to be an intermediate
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asymptotics of the generic initial problem under certain (unspecified) circumstances.
Much later, it was confirmed experimentally and by numerical simulation that, at
least for particular model profiles, the quasi-mode indeed represents the intermediate
asymptotics of the initial problem (Schecter et al. 2000). Balmforth et al. (1997)
successfully used quasi-modes to describe evolution of the vorticity defects in a
uniform shear flow, but overall, in our opinion, the concept of quasi-modes in
hydrodynamics has not received the attention it merits and its full potential has not
been realized. The concept has been successfully applied only to a limited number
of specific cases, mostly corresponding to the situations of somewhat smoothed
breaks in the basic flow (Briggs et al. 1970; Mironov & Sazonov 1989; Schecter
et al. 2000). Among the reasons preventing, in our view, a wider use of the quasi-
mode concept we mention a few: first, any important classes of flows where the
quasi-modes appear naturally in the generic situation have not been identified;
secondly, no analytical study describing all stages of the perturbation evolution† and,
in particular, quantifying the quasi-mode dominance, have been ever carried out;
thirdly, the presence of jumps is one of the most unpleasant features of the quasi-
modes, and pointing out the situations of interest where the jumps can be neglected
would have been of great help. The present work fills this gap: first, we show, that
for a particular very important class of shear flows without inflection points, namely,
for the boundary-layer-type flows, the quasi-modes represent the most natural way of
describing the perturbation evolution on certain time scales, secondly, we quantify the
dominance of the quasi-mode in different fields, and trace analytically and numerically
the entire picture of the field evolution; thirdly, we show that for the boundary layers
the quasi-mode jumps are very small and we explain when and why the jumps can
be neglected.

The study of perturbation evolution in boundary-layer-type flows has a rich his-
tory. The problem was revisited in a different context and considerable progress was
achieved by means of the so-called triple-deck scheme (e.g. Smith 1982). For pertur-
bations long compared to the boundary-layer thickness, weakly nonlinear solutions
to the Navier–Stokes equations were derived in terms of an asymptotic expansion
in powers of the natural small parameter ε characterizing smallness of the layer
thickness compared to a typical wavelength. To the leading order, the solution proves
to be inviscid. In our context, the central point is that at certain timescales arbitrary
long-wave perturbations behave as if they were a single discrete mode having no
singularities to the leading order, whereas, in fact, they represent an aggregate of the
singular modes of continuous spectrum (Shrira 1989). Although in Shrira (1989) this
fact was attributed correctly to the quasi-mode manifestation and a rough estimate of
the quasi-mode lifespan was given, the main thrust in this and later works in this vein
was on exploitation of the fact rather than its exploration. Such wavelike motions
were encountered in many different situations and sometimes were called ‘vorticity
waves’, since the ‘restoring force’ is due to the basic flow vorticity gradient (e.g. Pedley
& Stephanoff 1985; Shrira & Voronovich 1996; Voronovich, Shrira & Stepanyants
1998a). Although works based upon the triple-deck scheme alone are numbered in
hundreds, in our opinion, the essence of the underlying asympotics has not been fully
clarified. One of the main aims of this work is to clarify the mathematical foundations
of the widely used approach from the quasi-mode perspective.

We also address another outstanding classical problem, that of piecewise linear
approximations in fluid mechanics. The issue of when, why and in what sense the

† The papers by Mironov & Sazonov (1989) and Balmforth et al. (1997) were confined to some
special flows.
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Figure 1. Boundary-layer-type flows without (a) and with (b) inflection point A.
Piecewise linear approximation (c).

piecewise linear models work has never been properly addressed to our knowledge.
Although there exists a clear understanding of what happens if a single break (see
figure 1) is slightly smoothed (Briggs et al. 1970; Mironov & Sazonov 1989; Kelbert &
Sazonov 1996; Schecter et al. 2000), the issue of approximation of a given smooth flow
by a piecewise model remains much more an art than an algorithm-based technicality.
There are no answers to the simplest questions of the type: How many breaks should
be taken? What accuracy will be achieved and what qualitative features are lost?
One of our aims is to obtain an insight into this problem by applying the quasi-mode
concept.

The work is organized as follows. The present paper, which is the first part in the
series, is concerned with the detailed analysis of the evolution of spatially harmonic
initial perturbations to a boundary-layer-type shear flow. In § 2, starting with the
standard governing equations, we formulate the basic initial-value problem, that of
the evolution of longitudinally monochromatic perturbations with an arbitrary smooth
initial vertical distribution. Here we introduce a Green’s function of the problem and
reformulate the problem in terms of this function. In § 3, we present the asymptotics
of the Green’s function for long-wave perturbations and then thoroughly investigate
its singularities, in particular the Landau pole. In § 4, we study the contribution of
all the singularities to the large-time asymptotics and show that the contribution
due to this pole is, indeed, dominant over a long time interval, thus determining the
intermediate asymptotics of the problem. In § 5, employing numerics, we investigate
what happens beyond the range of applicability of the derived analytical asymptotics.
The concluding § 6, contains a summary and a brief discussion of some implications of
the quasi-mode concept, with attention being given to the problem of piecewise-linear
approximations in hydrodynamics as illuminated by the concept.

Evolution of three-dimensional and non-monochromatic perturbations, including
wave packets and broadband spectra, the effect of small viscosity, and relations be-
tween the inviscid and viscous results constitute the subject of the next parts of the
work.

2. The initial-value problem for inviscid boundary-layer-type shear flows:
statement of the problem

2.1. Basic flow

Consider a steady plane parallel flow of inviscid uniform fluid. We choose a Cartesian
frame in which x, y and z are the downstream, spanwise and vertical coordinates,
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respectively. The flow being specified by its velocity profile U(z) occupies the half-
space z > 0. The vorticity of such a basic flow has only a y-component and equals
Ω(z) = −U ′(z) where hereinafter (. . .)′ means differentiation with respect to z. For the
typical boundary-layer-type flows, the functions U(z) and Ω(z) vary monotonically,
and

U(z→∞)→ U∞, Ω(z→∞)→ 0.

As a characteristic velocity scale for the basic flow, it is natural to take the total
velocity variation ∆U = |Us − U∞|, i.e. the difference between the velocity at the
surface Us (hereinafter we use the subscript s to indicate that the variable is taken
at the surface z = 0) and its value at infinity. We do not specify the values Us and
U∞, since the convention differs for boundary layers of different types. Say, for the
boundary layers over plate it is usually assumed that U∞ > 0, Us = 0 (then ∆U = U∞,
U ′ > 0), whereas for the free surface currents the convention is opposite: U∞ = 0,
Us > 0 (then ∆U = Us, U

′ < 0).
Let us define a characteristic flow thickness H , as

H =

∫ ∞
0

Ω(z) dz

Ωs
≡ ∆U

|U ′s| . (2.1)

We assume that the flow profile is smooth enough in the sense that all its derivatives
can be roughly estimated as follows

|U(n)(z)| . ∆U

Hn
, (n = 1, 2, . . .). (2.2)

2.2. Governing equations

Confining our attention in this first part of the work to consideration of two-
dimensional small perturbations to the basic flow, let u(z, x, t) and w(z, x, t) be the
horizontal and vertical velocity disturbances, respectively. It is convenient to introduce
a stream function ψ(z, x, t), such that: u = −∂zψ and w = ∂xψ. We assume the velocity
disturbances to be small compared to ∆U, then w and ψ obey the linearized equation
deduced from the Euler and continuity equations (e.g. Drazin & Reid 1981)

(∂t +U∂x)(∂
2
z + ∂2

x)ψ −U ′′∂xψ = 0. (2.3)

Since the equation is longitudinally uniform it is convenient to apply the Fourier
transform and consider the harmonic disturbances of the type: ψ = ψ(z, t) exp(ikx),
where k is the horizontal wavenumber. We can assume k > 0 without loss of generality.
For such spatially harmonic disturbances the equation (2.3) takes the form

(∂t + ikU)(∂2
z − k2)ψ − ikU ′′ψ = 0. (2.4a)

2.3. Boundary and initial conditions

We assume the ‘no-flux’ condition at the surface, i.e. w(z= 0) = 0. The disturbances
are also required to decay far from the surface, i.e. u, w → 0 as z → ∞. This implies
that each of the spatial harmonics of the disturbance tend to exp(−kx) since the basic
flow tends to a constant as z →∞. Thus, the boundary conditions in terms of stream
function take the form:

ψ = 0 as z = 0, (2.4b)

∂zψ + kψ → 0 as z →∞. (2.4c)



138 V. I. Shrira and I. A. Sazonov

At the initial moment of time t = 0, the velocity field is assumed to be given:

ψ(t = 0) = ψ0, (2.4d)

where ψ0 satisfies the boundary conditions (2.4b, c).
We consider generic initial conditions assuming the initial disturbances to be

localized in the layer z . H and decaying fast enough as z increases, with the vertical
scale of the same order as that of the basic flow. We also assume non-vanishing of
the integral over z of initial vorticity ω0,

ω0 = (∂2
z − k2)ψ0. (2.5)

The above constraints are formalized as follows:

ω0/Ω → 0 as z →∞, (2.6a)

|∂nzω0| . |ω0|/Hn (n = 1, 2, . . .), (2.6b)∫ ∞
0

ω0(z) dz 6= 0. (2.6c)

The set of equations (2.4) under constraints (2.6) prescribes the initial-value problem
which is the subject of our study.

2.4. The Green’s function

We will study the evolution of perturbations specified by the initial-value problem
(2.4) by employing Green’s functions. Considering a problem where the disturbances
have been suddenly excited at time t = 0 by an external force, we obtain an equation
with a right-hand side

(∂t + ikU)(∂2
z − k2)ψ − ikU ′′ψ = ω0δ(t), (2.7)

where the stream function ψ now satisfies the causality principle: ψ(t < 0) ≡ 0 (i.e.
there is no disturbance until the external force acts). For t > 0, the solution of the
problem (2.7) and (2.4b, c) coincides with that of the initial problem we are looking
for.

The solution for any initial disturbance can be presented in the integral form

ψ(z, k, t) =

∫ ∞
0

G(z | h; t)ω0(h) dh, (2.8)

where the kernel G is the Green’s function specified by the equation

(∂t + ikU)(∂2
z − k2)G− ikU ′′G = δ(z − h)δ(t), (2.9)

complemented by the boundary conditions (2.4b)–(2.4c), and the causality principle
G(t < 0) ≡ 0.

2.5. The Laplace transform

To study the time dependence of the Green’s function we apply the Laplace transform
with respect to time

G̃(z | h; c) =

∫ ∞
0

G(z | h; t)e−st dt. (2.10)

We use the value s = −ikc as the Laplace transform parameter, where c can be
interpreted as the complex phase velocity of spatially harmonic perturbation with
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wavenumber k. Then the inverse Laplace transform takes the form

G(z | h; t) =
k

2π

∫
Γ

G̃(z | h; c)e−ikct dc, (2.11)

where the integration contour Γ goes along the Re c axis above all singularities of
G̃(c).

Substituting (2.10) into (2.9) and dividing it by ik(−c+U), we obtain

(∂2
z − k2)G̃− U ′′

U − cG̃ =
δ(z − h)

ik(Uh − c) , (2.12)

where Uh = U(h).
Thus, we have reformulated the original boundary-value problem (2.4) into an

equivalent one in terms of G̃: equation (2.12) with the boundary conditions (2.4b, c).
The left-hand side of (2.12) is the famous Rayleigh equation for small harmonic (with
respect to x and t) disturbances propagating with phase velocity c.

3. Singularities of the Green’s function
To be able to describe eventually the evolution of arbitrary initial perturbations at

large times, we first find an approximate explicit expression for the Green’s function
in the long-wave approximation which, as we justify a posteriori proves to be in a
sense sufficient for arbitrary perturbations, then focus upon the singularities of the
Green’s function which determine the large-time asymptotics.

3.1. Longwave asymptotics of the Green’s function

As we show below, the long-wave asymptotics is sufficient to describe the main
features of boundary-layer dynamics. Hence, we seek a solution to the boundary-
value problem (2.12) and (2.4b, c) employing the assumed smallness

ε = kH � 1,

as a series in powers of ε.
The derivation of an asymptotic solution to this problem is far from being trivial,

because a long-wave expansion cannot be applied directly to the Rayleigh equation
for semi-infinite flows, as the term k2 necessarily dominates over the term U ′′/(U − c)
when z → ∞, and this is the principal difficulty of analysing the boundary-layer-
type flows. Such a difficulty does not appear in the context of, say, channel flows,
where a long-wave expansion is quite straightforward (Heisenberg 1924; Drazin &
Reid 1981). Our derivation is based on the two different asymptotic expansions for
partial solutions of the Rayleigh equation, which allows us to deal with an arbitrary
smooth velocity profile. (The method applied by Kelbert & Sazonov 1996 for a similar
problem required the flows to be constant beyond a layer of finite width.)

However, since for the main line of our study the specific way the Green’s function
is obtained is not vital, although being of interest in itself, we formulate here only the
result we need, while the derivation is given in Appendix A. The leading terms of the
expansion of G̃ sufficient for the further analysis can be presented as

ikG̃ = −Vz Imin{z,h} + k V 2
∞

VzIz Ih

1 + k V 2∞IB
. (3.1)

Here IZ =
∫ Z

0
V−2
z dz where Z stands for z, h, B,min{z, h}, VZ = UZ − c; UZ ≡ U(Z),

(here the subscript Z stands for the argument which might take the values z, h and
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∞); B is a constant of the order of H which later drops out of the final expressions
but is used in our intermediate manipulations.

Since the evolution of arbitrary initial perturbations at large times is determined
by the singularities of the Green’s function G̃(c) analytically continued from the
integration contour Γ over the entire complex c-plane, our main task at this stage is
to continue analytically G̃(c) and thoroughly study all its singularities: branch points
and poles.

3.2. Singularities of integral IZ

We first examine analytical continuation and singularities of the auxiliary function
IZ (c) which enters into the derived expression for the Green’s function (3.1). As a
function of complex c it is specified by the integral

IZ (c) =

∫ Z

0

dz

(Uz − c)2
. (3.2)

This function is uniquely defined on the Riemann surface with the cut [Us,UZ ] since
the integrand does not contain any singularities on this surface. For our purposes,
however, we have to continue IZ (c) through the cut.

Let Uz ≡ U(z) admit an analytical continuation in the complex z-plane and be
regular in the vicinity of the segment [0, Z ]. Note, that any boundary-layer-type
profile can be approximated by such functions. If we want to consider an analytical
continuation of IZ (c) through the cut [Us,UZ ] and keep the analytical branch of IZ (c)
we have to integrate along a contour passing around the point zc in the complex
z-plane. The point zc = U−1(c) is the image of the point c; it is real when c ∈ (Us,UZ ).
Thus, to obtain an analytical continuation under the cut we must use an integration
contour at least partly lying on the complex z-plane.

Now we can proceed with an examination of the singularities of IZ (c). On changing
the integration variable (z → U) and adding and subtracting the term

z′′(c)
∫ UZ

Us

dU

Vz

the integral can be presented in the form

IZ =
1

U ′sVs
− 1

U ′ZVZ
+
U ′′c
U ′c

log
Vs

VZ
+ JZ , (3.3a)

JZ =

∫ Z

0

(
U ′′c

(U ′c)3
− U ′′z

(U ′z)3

)
U ′z dz

Vz
. (3.3b)

Here, U ′c = U ′(zc), U ′′c = U ′′(zc) (U(zc) = c); JZ is an analytic function in the
neighbourhood of the segment [Us,UZ ] if U ′′z (U ′z)−3 is an analytical function in the
vicinity of [0, Z]. Thus, we split the integral under consideration (3.2) into an explicit
singular part and an implicit regular one, i.e. we ‘pulled out’ the singularities from
the integral.

Hence, it easy to see from (3.3), that the singularities of integral IZ (c) are at the
points c = Us and c = UZ and are simultaneously poles and logarithmic branch
points.

The rule for choosing the proper branches is as follows: if c is real and c /∈ [Us,UZ ],
then Vs/VZ > 0 and we take the real branch of log(Vs/VZ ); if c is real and c ∈ [Us,UZ ],
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then Vs/VZ < 0 and we can show that

log
Vs

VZ
= log

(
− Vs
VZ

)
+ πi sgnU ′z, c ∈ [Us,UZ ], (3.4)

where the real branch of log(−Vs/VZ ) is taken.

3.3. The Landau pole

Returning to the analysis of the Green’s function (3.1) we can expect singularities in
the integration limits of the integrals Iz , Ih and IB . We discuss these singularities later,
whereas now we focus upon the strongest singularity: the Landau pole. The pole is the
singularity of most interest. Now we show that, even if there are no inflection points
in the flow profile, the Green’s function for the boundary-layer-type flows necessarily
has a pole, characterized by, we stress this, an asymptotically small imaginary part.

Equating the denominator of the Green’s function to zero, consider the roots of
the equation

1 + k

∫ B

0

V 2∞
V 2
z

dz + O(k2) = 0. (3.5)

Using (3.3) and (3.4) we can present it in the form

1 + kV 2
∞

(
1

VsU ′s
+

U ′′c
(U ′c)3

[
log

(
− Vs
VB

)
− πi

]
− 1

VBU
′
B

+ JB

)
= 0, (3.6)

where the logarithmic function is real when c is real and c ∈ [Us,UB]. Remembering
that Vs ≡ Us−c, V∞ ≡ U∞−c we can rewrite (3.6) in the form

1

Us − c
{

(Us − c) + k
(U∞ − c)2

U ′s
− k(Us − c) (U∞ − c)2U ′′c

(U ′c)3
πi + k(. . .)

}
= 0. (3.7)

Dots denote the terms which contribute to higher orders in the expansion with respect
to small k. From (3.7), we can easily see that c→ Us when k → 0, and the case k = 0
is degenerate.

Solving the numerator of (3.7) by the successive iterations (c−Us = k(. . .) + h.o.t.)
separately for the real and imaginary parts of the cp, we find the leading terms for
the pole:

cp = cr + ici, (3.8a)

cr = Us + k
∆U2

U ′s
+ O(k2 log k), (3.8b)

ci = sgn(U ′s) k
2π
U ′′r ∆U4

(U ′s)4
+ O(k3 log k), (3.8c)

where

U ′′r =


U ′′s , U ′′s 6= 0,

kU ′′′s
∆U2

U ′2s
, U ′′s = 0,

The subscript r in U ′′r means that we can take U ′′s for flows where U ′′s 6= 0, i.e. in
the generic case. If, however, the flow is degenerate and U ′′s = 0, (e.g. the Blasius
profile) we find the critical layer approximately from the equation (for certainty
we distinguish critical layers occurring for real zr and complex zc: U(zr) = Re cp,
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U(zc) = cp. Obviously, zc = zr + O(k2))

Us +U ′szr = cr ⇒ zr = k
∆U2

U ′2s
+ O(k2 log k),

and then present the second derivative as

U ′′r ' U ′′′s zr ' kU ′′′s ∆U2

U ′2s
.

In this case, the imaginary part of the phase velocity is O(k3) (It is easy to check that
there is no need for higher orders in k in the expansion of the Wronskian (A 14) to
find the leading term of ci although ci is of higher order itself):

ci = sgnU ′s k
3πU ′′′s

(
∆U

U ′s

)6

+ O(k4 log k).

Even more degenerate flows in which U ′′′s , U ′′′′s = 0, etc., can be considered similarly.
The corresponding ci will be of higher order with respect to k, but, so far, we are not
aware of the existence of real flows justifying such an exercise.

Thus, we see that in a generic boundary layer the sign of the imaginary part of the
pole cp is determined by the value U ′sU ′′s . In a flow without inflection points (figure 1,
curve a), the product U ′zU ′′z is negative for all finite z including the surface. Therefore,
ci < 0 in such the flows, that is, the pole is always located in the lower half-plane,
and should correspond to a decaying mode.

On the contrary, if U ′sU ′′s > 0, then the pole cp is situated in the upper half-plane
and corresponds to an unstable mode in the sense that the residue in it yields a
solution with a growing factor exp[ik(x − crt) + kcit]. Thus, U ′sU ′′s > 0 is a sufficient
condition of instability for the flows under consideration.

Note that the condition necessarily implies the existence at least one inflection
point (figure 1, curve b). Indeed, if U ′z is monotonic (as was assumed in § 2.1) then
U ′zU ′′z < 0 for sufficiently large z for any boundary-layer-type flow. Then U ′′z should
change its sign an odd number of times (at least one). If there is an even number
of inflection points or if they are absent, then U ′sU ′′s < 0 and ci < 0 for the found
pole. (If we do not require monotonic behaviour of U ′z then U ′zU ′′z |z→∞ > 0 becomes
possible and U ′sU ′′s > 0 can be valid for an even number of inflection points, and the
opposite inequality for an odd number.)

For the boundary layers without inflection points of the type (figure 1, curve a)
that we are mostly interested in, where the existence of true discrete modes is strictly
prohibited by the Rayleigh theorem, we have shown that there always exists a pole
of the Green’s function asymptotically close to the real axis. It is this smallness of the
imaginary coordinate of the pole that, as we show later, makes the pole contribution
dynamically significant.

From the general viewpoint, the nature of this pole is the same as that of the pole
introduced by Landau (1946) in plasmas and by Briggs et al. (1970) in hydrodynamics.
However, a brief comment regarding the pole position on the Riemann sheet (see
figure 2) might be helpful.

It is more convenient to consider first the flows with an inflection point (see figure 1,
curve b), where the pole cp is in the upper half-plane. Denote by P0 a sheet of complex
c-plane with a cut [Umin, Umax] (in our case [U∞, Us] or [Us,U∞]), often called the
‘physical’ sheet. It is easy to show that there are no singularities of the function G̃(c)
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Figure 2. Sheets of the analytical continuation: (a) c-plane for the case when the profile has an
inflection point and both an unstable mode and the conjugate one exist. The corresponding poles
cp and c∗p are located on the ‘physical’ sheet P0. A continuous deformation of the velocity profile
moves the poles along the lines lp and l∗p , respectively. (b) If because of the continuous deformation
of the profile the inflection point disappears, the poles cross the cut [Umin, Umax] (without merging)
and do not disappear, but pass onto the other sheets P1 and P ∗1 . Lines indicated by arrows show
the analytical continuation from the initial contour Γ to the vicinity of the poles in both cases.

on P0, except, maybe, a few poles (figure 2a). These poles, if they exist, are located
within the so-called Howard’s semicircle (e.g. Drazin & Reid 1981).

If a pole cp exists on the upper half-plane of P0, then the corresponding complex
conjugate pole c∗p necessarily exists and is obviously situated on the lower half-plane of
the physical sheet P0 (see figure 2a). The residue at the conjugate pole c∗p corresponds
to a decaying eigen mode. The latter is commonly neglected. (Obviously the decaying
mode contribution is exponentially small. Moreover, such modes are known to be
structurally unstable with respect to introducing an infinitesimal viscosity. That is, in
contrast to the growing modes, they do not represent the limit of the corresponding
modes of the Orr–Sommerfeld equation when the Reynolds number tends to infinity
(e.g. Lin 1955).)

If we deform the initial contour Γ downward (recall that the integrand of the
inverse Laplace transform (2.11) decays downward for t > 0 owing to the factor
exp(−ikct)). Then it splits into a set of contours around all the poles on the physical
sheet P0 and a contour around the cut [Umin, Umax]. The contribution due to each pole
can be found by calculating their residues. Thus, the solution describing evolution of
an initial delta pulse is represented as a sum of growing and decaying modes and
an integral around the cut. The latter describes the contribution of the continuous
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spectrum modes which is known to decay as t−2 for large time for any smooth initial
perturbation.

If we deform a profile with an inflection point (or vary appropriately the wavenum-
ber) the poles cp and c∗p move on the P0 sheet and, if the inflection point disappears
(or the wavenumber becomes large enough), they reach and cross the cut (see figure
2b). (It is possible to show that under the variation of the wavenumber the poles
must cross the cut precisely at the inflection point. Notice also, that the pole and
the conjugate pole do not merge as they are at the opposite branches of the cut.)
After crossing the cut, the poles move onto sheets P1 and P ∗1 which are the analytical
continuations through the cut from above and from below, respectively.

In the flows without inflection points there are no poles on the physical sheet P0

(see figure 2b), therefore only the integral around the cut contributes to G(c), that
is, in full accordance with the common wisdom, the continuous spectrum determines
the evolution of any initial perturbation. Hence, we might expect the same t−2 decay.
As we show below, although such decay indeed manifests itself at the final stage
of evolution, there is a wide time interval specified in the next section where the
evolution is quite different and is determined by the residue of the Landau pole cp.
Technically speaking, we show in the next section with what accuracy the integral
over the cut is approximated well by the residue in the pole cp. The conjugated pole
c∗p on P ∗1 does not contribute since the integration contour is moved and continued
from above and, thus, ‘catches’ the singularities of sheet P1 only, but not those of
P ∗1 . The fact that the integration contour is moved and continued from above follows
directly from the causality principle, explicitly or implicitly necessarily employed in
consideration of initial problems.

3.4. Other singularities of the Green’s function

Based on the analysis of the singularities of integral (3.2) that we carried out in
§ 3.2, we can expect the logarithmic singularities in the points corresponding to the
integration limits of the integrals Iz , Ih and IB , i.e. at the points c = Uz , c = Uh and
c = Us. We might expect a singularity at c = UB as well, but, since B is a fictitious
parameter, this singularity is absent in the exact formula. If we retain a finite number
of terms of the series in ε, say n, it is possible to check that this singularity appears
only in the order O(εn+1) and, therefore, we do not need to consider it here.

If we take into account higher-order approximations of the Green’s function we
also obtain a singularity at the point U∞ (see function χ in (A 13d)), nevertheless, it
is possible to show that the contribution of this point is of higher order.

The types of singularities at the points Us,Uz and Uz subject to further analysis are
different as they can be either only in the numerator (Uz ,Uh) or both in the numerator
and denominator, as is the case for Us. It is easy to see that the combination VzIz
does not result in a pole at the point Uz but yields only a logarithmic singularity.

All of the singularities and the coefficients with which they enter into the Green’s
function G̃ are summarized in table 1.

4. Large-time asymptotics of long-wave perturbations
In this section we analyse the evolution of arbitrary initial long-wave perturbations

capitalizing on the derived explicit formulae for the singularities of the Green’s
function (3.1) summarized in table 1.

To study large-time asymptotics of the solutions of the initial-value problem (2.4)
we make cuts from each branch point vertically downwards as this is the direction
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Point Type of singularity Coefficient in G̃

cp
1

c− cp iV 2
∞VzIzVsIh

∣∣
c=cp

Uz Vz logVz
U ′′z

ik(U ′z)3

[
θ(h− z) +

kV 2∞
c− cp VsIh

]∣∣∣∣
c=Uz

Uh

1

Vh
+

U ′′h
(U ′h)2

logVh
Vz

ikU ′h

[
θ(z − h) +

kV 2∞
(c− cp)U ′h VsVzIz

]∣∣∣∣
c=Uh

Us V 2
s logVs

iVzU
′′
s

k3U ′sV 4∞

∣∣∣∣
c=Us

Table 1. Types of singularities and their coefficients (θ(x) is the Heaviside unit step function).

P0

Umax

P1

cp

Im c

Umin Uh Uz

P0

C
c-plane

P0

Re c

Figure 3. Deformation of the integration contour. Bold lines depict the initial integration contour
Γ and the deformed contour representing a set of four integration contours Γs, Γp, Γz and Γh
encompassing the Green’s function G̃(c) singular points Us, cp, Uz and Uh; saw-tooth lines denote
cuts from the singular points. The singular point at infinity U∞ is excluded since it does not
contribute in the leading-order approximation.

of the steepest descent of the integrand in (2.11) due to the factor exp(−ikct). Thus,
we consider a sheet consisting of parts of the P0 and P1 sheets. All the singularities
such as Vz, Vh which are hidden, if the analytical continuation onto the P0 sheet is
considered, become apparent.

Then, we move the initial contour Γ downwards, deform it, and split it into the
four contours Γp, Γz, Γh and Γs encompassing each singularity and passing along the
vertical cuts for branch points (figure 3).

We consider consecutively contributions of each singular point and the character-
istic time when its asymptotic representation is valid for the Green’s function. Then,
we calculate its convolution with an arbitrary long-wave initial distribution of the
vorticity ω0 satisfying (2.6). The derivation for the points Us, Uz and Uh is described
in Appendix B in detail. In this section, we present final simplified formulae for the
contribution of the singularities in the velocity components u and w and vorticity ω.
We denote by subscript p, z, h and s contributions due to the points cp, Uz , Uh and
Us, respectively. (We recall that the singularity at infinity U∞ is not considered since
its contribution is of higher order in k.)
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4.1. Residue in the pole. Quasi-modes

We calculate the residue straightforwardly and obtain the following leading term of
the expansion of Gp in k

Gp = ik2 ∆U4

U ′s
[Vz(cp)Iz(cp)] Ih(cp) exp(−ikcpt), (4.1)

taking into account the fact that Vs(cp) = k∆U2(U ′s)−1. Expression (4.1) describes a
wave with the complex phase velocity cp and vertical velocity profile Vz(cp)Iz(cp).

Consider the integral Iz(cp) as a function of z. By virtue of (3.3), the behaviour of
Iz(cp) for small z ∼ zr is mainly determined by the singular terms. For intermediate
z ∼ H the non-singular term Jz in (3.3b) should be taken into account. In this range,
we can simplify this term by approximating function Vz in the denominator of the
integrand for Jz by the constant Vz(cp) ≈ V∞(Us) ≡ U∞ −Us. As a result, we obtain
an explicit approximate formula

Iz(cp) ' 1

VsU ′s
− 1

VzU ′z
+

U ′′r
(U ′s)3

log
Vs

Vz
− U ′′r

(U ′s)3

Uz−Us

U∞−Us

+
U−1
s −U−1

z

U∞−Us

. (4.2)

The smaller k, the better is this approximation. Since cp is close to Us we can substitute
U ′s instead of U ′r . The function Iz(cp) attains its maximum

max
z
{Iz(cp)} =

1

iciU ′s
' i(U ′s)3

k2π∆U4U ′′r

at z = zr , then sharply decreases down to a value of the order of (−crU ′s)−1 ≈ k−1∆U−2

determined by the first term of (4.2). Using this approximation, we can estimate the
integral in the convolution of the Green’s function and the initial distribution of
vorticity ω0(z)∫ ∞

0

Ih(cp)ω0(h) dh ' 1

k∆U2

∫ ∞
0

ω0(h) dh =
1

k∆U2
(−u0(0) + O(k2)),

where u0 = −∂zψ0 is the horizontal velocity component of the initial disturbance.
The integration over small h ∼ zr does not contribute except in the special case∫ ∞

0
ω0(h) = 0.

Eventually, we can present the formulae for the pole contribution into asymptotics
of the initial problem in terms of the field components

wp = ikψp =
−ik2∆U2

U ′s
[Vz(cp)Iz(cp)] exp(−ikcpt)

∫ ∞
0

ω0(h) dh, (4.3a)

up =
k∆U2

U ′s
[U ′zIz(cp) + V−1

z (cp)] exp(−ikcpt)

∫ ∞
0

ω0(h) dh, (4.3b)

ωp =
−k∆U2

U ′s
[U ′′z Iz(cp)] exp(−ikcpt)

∫ ∞
0

ω0(h) dh. (4.3c)

Note, that if ci < 0, we must take different branches of the logarithmic function
in Iz(cp) (the third term in (4.2)), depending on whether z is greater or smaller than
the critical layer height zr . (We recall that we distinguish the real critical layer zr:
U(zr) = Re cp, and the complex critical layer zc: U(zc) = cp.) Therefore, the residue
of Gp has a small jump at this point (see figure 8 in Briggs et al. 1970) that results in
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the jumps in the velocity and vorticity components:

∆wp =
2iπ2k4(U ′′r )2∆U6

(U ′s)8
exp(−iktcp)

∫ ∞
0

ω0(h) dh ∼ ε3 wp(z∼H), (4.4a)

∆up =
2iπk∆U2U ′′r

(U ′s)3
exp(−iktcp)

∫ ∞
0

ω0(h) dh ∼ ε up(z.H), (4.4b)

∆ωp = −2iπk∆U2(U ′′r )2

(U ′s)4
exp(−iktcp)

∫ ∞
0

ω0(h) dh ∼ εωp(z.H). (4.4c)

Owing to these jumps it is impossible to obtain a continuous smooth solution due
to the pole alone satisfying both the boundary conditions and the Rayleigh equation
in all the points. Thus, if ci < 0, the residue in the pole cp does not correspond to
a true eigen mode and that is why this solution does not contradict the Rayleigh
theorem (see also Briggs et al. 1970 for more detail). However, since the residue in the
pole cp does contribute significantly to the asymptotics and, moreover, as we show
below, its contribution dominates over significant time intervals and behaves as a
mode, it makes sense to treat it like a mode and call it a mode as well. To reflect
the mathematical peculiarity of such objects we use the term quasi-modes coined by
Briggs et al. (1970). However, to be of practical use, the mode’s jumps should be
small. We show below that in our context these jumps are indeed small (compared to
the typical values of wp, up and ωp in the layer z . H , see (4.7) below).

We stress, that the total velocity and vorticity fields remain continuous and smooth
as expected for a solution of an initial problem with a smooth initial distribution: the
jumps of wp, up and ωp in the point zr are equal in modulo but opposite in sign to
the jumps of wz, uz and ωz (see § 4.2) owing to the critical layer singularity c = U(zc).

Note, also, that we cannot obtain other field components, say, up and ωp, by
straightforwardly differentiating wp, it is necessary to calculate the residues in cp of
ũ(c, z), ω̃(c, z). The same is true for the uz and ωz . The components ũ and ω̃ have to
be expressed through derivatives of the Green’s function:

ũ =

∫ ∞
0

(−∂zG̃(z|h))ω0(h) dh, ω̃ =

∫ ∞
0

(∂2
z − k2)G̃(z|h)ω0(h) dh. (4.5)

It is easy show that the derivatives ∂zG̃ and ∂2
z G̃ have singularities in the same points

as G̃ and these singularities can be studied in the same manner.

The ultimate simplifications

Notice, that since the maximal contribution into integral Iz(cp) is provided by
integration in the neighbourhood of z ∼ zr , we can further simplify this integral
approximating Uz ≈ Us +U ′sz. Then we have

Iz(cp) ≈ z

(Us +U ′sz − cp)(Us − cp) . (4.6)

Comparison with the exact function shows that (4.6) satisfactorily quantitatively
describes the integral in the considered approximation (but not qualitatively as the
small jump is removed).

Outside the immediate vicinity of the surface, i.e. for z � zr , we can further
simplify the expressions for the field components. The ultimate formulae describe
weakly decaying monochromatic waves characterized by very simple smooth field
dependence on z with the amplitude proportional to the first moment of the initial
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distribution of vorticity

wp = ik
Us −Uz

U ′s
[exp(−ikcpt)] exp(−kz)

∫ ∞
0

ω0(h) dh, (4.7a)

up =
U ′z
U ′s

[exp(−ikcpt)]

∫ ∞
0

ω0(h) dh, (4.7b)

ωp = −U
′′
z

U ′s
[exp(−ikcpt)]

∫ ∞
0

ω0(h) dh. (4.7c)

The small spikes and jumps are all in the neglected higher orders. From (4.7) we can
see that the vertical velocity increases as with z and attains its maximum at z ∼ H
and then decreases owing to the factor exp(−kz) (see comments on this factor at the
end of Appendix A). The horizontal velocity attains its maximum at the surface and
remains of the same order while z . H . Position of the maximum for the vorticity ωp
depends on the velocity profile and is determined by maximum of U ′′.

4.2. Contribution of the singularity Uz

Non-modal contributions of the singularity c = Uz to the velocity and vorticity com-
ponents can be described by the following asymptotic formulae (see Appendix B.2):

wz =
iU ′′z

kt2(U ′z)3
exp(−ikUzt)

∫ ∞
z

ω0(h) dh+ waz , (4.8a)

uz =
iU ′′z

kt(U ′z)2
exp(−ikUzt)

∫ ∞
z

ω0(h) dh+ uaz , (4.8b)

ωz = −U
′′
z

U ′z
exp(−ikUzt)

∫ ∞
z

ω0(h) dh+ ωa
z . (4.8c)

owing to the small factor k, the last terms are essential near the critical layer z ∼ zr
only:

waz =
kU ′′r ∆U2

(U ′s)4

[
exp(−iktUz)

t
− ik(Uz−cp)E1 exp(−iktcp)

] ∫ ∞
0

ω0(h) dh, (4.9a)

uaz =
kU ′′r ∆U2

(U ′s)3
E1 exp(−iktcp)

∫ ∞
0

ω0(h) dh, (4.9b)

ωa
z =

kU ′′r ∆U2

(U ′s)4

[
U ′′z E1 exp(−iktcp)− (U ′s)2

(Uz−cp) exp(−iktUz)

] ∫ ∞
0

ω0(h) dh, (4.9c)

where

E1(Z) =

∫ ∞
Z

e−z dz

is the exponential integral function. Throughout this work it has the same argument
E1 = E1[ikt(Uz−cp)]. Different branches of this function are taken for the cases z < zr
and z > zr if ci < 0, therefore, the functions wz , uz and ωz have jumps and, as is
mentioned above, those jumps exactly compensate the jumps (4.4) in wp, up and ωp,
respectively, ensuring smoothness of the total field.

The derived formulae (4.8)–(4.9) become valid for sufficiently large time:

t� tz ∼ 1

|U ′s| . (4.10)
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4.3. Contribution of the singularity Uh

Contribution of the singularity Uh to the Green’s function is derived in Appendix B.3.
Its convolution with the initial condition is given by the following asymptotic formulae

wh ' wh,z + wh,s =
−i

kt2
ω0(z)

(U ′z)2
exp(−ikUzt) +

(Us−Uz)U
′
sω0(0)

ik2t2∆U2
exp(−ikUst), (4.11a)

uh ' uh,z + uh,s =
−i

kt

ω0(z)

U ′z
exp(−ikUzt)− U ′zU ′sω0(0)

k3t2∆U2
exp(−ikUst), (4.11b)

ωh ' ωh,z + ωh,s = ω0(z) exp(−ikUzt)− U ′′z U ′sω0(0)

ik4t2∆U2
exp(−ikUst). (4.11c)

First terms in (4.11) are valid when

t� th,z ∼ max
z

|U ′′z |
k(U ′z)2

. (4.12a)

The second terms in (4.11) are valid for essentially greater time

t� th,s ∼ |U ′s|
k2∆U2

, (4.12b)

but they should be taken into account for vertical velocity only provided ω0(0) 6= 0.
Numerical computation shows that the second terms in (4.11) do not dominate even
for smaller time.

4.4. Contribution of the singularity Us

The contribution of Us is given by the following asymptotic formulae (see Ap-
pendix B.1):

ws =
−2U ′′s (Us−Uz)

k4t3U ′s∆U4
exp(−ikUst)

∫ ∞
0

ω0(h) dh, (4.13)

us =
2iU ′′s U ′z

k5t3U ′s∆U4
exp(−ikUst)

∫ ∞
0

ω0(h) dh, (4.14)

ωs =
−2iU ′′s U ′′z
k5t3U ′s∆U4

exp(−ikUst)

∫ ∞
0

ω0(h) dh, (4.15)

which are valid when

t� ts ∼ U ′′s
(U ′s)2k

. (4.16)

4.5. Quasi-modes as intermediate asymptotics of smooth initial perturbations

Now we compare the contribution of all the singularities of the Green’s function into
all field components. We can split the total perturbation field into two parts: the first
one due the residue at the pole (we refer to it as the quasi-mode (QM), so wp ≡ wQM,
etc.) and the remainder (we call it the ‘tail’ for simplicity)

w = wQM + wtail, wtail = wz + wh,z + wh,s + ws,
∼ exp(−kcit) ∼ t−2 ∼ t−2 ∼ t−2 ∼ t−2 ∼ t−3

u = uQM + utail, utail = uz + uh,z + uh,s + us,
∼ exp(−kcit) ∼ t−1 ∼ t−1 ∼ t−1 ∼ t−2 ∼ t−3

ω = ωQM + ωtail, ωtail = ωz + ωh,z + ωh,s + ωs,
∼ exp(−kcit) ∼ t−0 ∼ t−0 ∼ t−0 ∼ t−2 ∼ t−3
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where specific time asymptotics of each contribution are explicitly shown. Thus, the
QM-part of the disturbance decays exponentially, whereas velocity components of
the tail decay algebraically. Therefore, the QM-part can dominate in the velocity
field over a certain interval of time. On the contrary, the vorticity distribution is
never dominated by the quasi-mode unless a special class of initial disturbances is
considered.

Before attempting to find the time interval of the quasi-mode dominance we should
establish a criterion. Obviously, the answer would vary for different components
and for different z. For example, as we mentioned, it never dominates in the vorticity
distribution, because vorticity emphasizes the field components of small vertical scales
while the quasi-mode has the vertical scale of the boundary layer. However, if we
are interested in the evolution of the field in a certain integral sense, say, only in
the components of O(1) vertical scale, then the small-scale field components being
filtered out, the quasi-mode becomes more emphasized. Even in terms of vorticity
(understood in such a coarse-grained sense) we find, tracing behaviour of the integrals
of the type, ∫ ∞

0

f(z)ω(z) dz,

where f(z) is a smooth function, that the QM contribution prevails in a certain time
interval. In terms of the horizontal velocity, the QM-part cannot prevail in the vicinity
of the critical layer (where the non-modal term ua is essential).

The most obvious and sufficiently universal integral criterion enabling us to compare
different parts of the solution is the disturbance energy, defined as

E =
1

2

∫ +∞

0

〈|Re u|2 + |Rew|2〉 dz, (4.17)

where 〈. . .〉 denotes averaging over x. It is easy to see that the second term of the
integrand is |Rew|2 ∼ ε2|Re u|2) for long waves and is, therefore, negligible. Using
our previous results, we present the time asymptotics for both parts of the horizontal
velocity retaining only the leading terms in a more explicit way:

uQM ≡ up ≈ U ′z
U ′s

[exp(ikx− ikcpt)]

∫ ∞
0

ω0(h) dh,

utail = uz + uh,z ≈ −i

kt

 ′
∫ ∞
z

ω0(h) dh

U ′z
exp(ikx− ikUzt),

For the energies of the two parts we immediately find

EQM =
1

2

∫ +∞

0

〈|Re uQM|2〉 dz

=
1

4

∫ ∞
0

(
U ′

U ′s

)2

dz

(∫ ∞
0

|ω0(z)| dz
)2

exp(−2cikt) ∝ exp(−2kcit),

Etail =
1

2

∫ +∞

0

〈|Re utail|2〉 dz =
1

4k2t2

∫ ∞
0


∫ ∞
z

ω0(h) dh

U ′z

′ 2

dz ∝ 1

t2
.

Thus, in terms of energy the QM and ‘tail’ parts have the same asymptotic decay as
in terms of stream function or vertical velocity.
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Although the energy E is a non-additive value, nevertheless it is approximately
equal to the sum of EQM and Etail. It is easy to show that

E − (EQM + Etail) =
1

2

∫ +∞

0

〈|Re(uQM utail)|〉 dz � EQM, Etail

for sufficiently large times. This is due to the oscillatory behaviour in z of utail ∝
exp(−ikUzt), whereas the uQM characteristic lengthscale is of the order H . Thus,

E ≈ EQM + Etail.

It is convenient to use non-dimensional variables

t̄ = t|U ′s|, (4.18a)

k̄ = kH ≡ ε, (4.18b)

z̄ = z/H, (4.18c)

and to specify the amplitude of the initial disturbance setting∫ ∞
0

|ω0(z)| dz ∼ 1.

Then, in the generic case (U ′′s 6= 0), we obtain

EQM ∼ exp(−2κk̄3t̄ ),

Etail ∼ k̄−2t̄−2,

where κ = π|U ′′s ∆U(U ′s)−2| is a non-dimensional parameter of the order of unity. In
the important degenerate case of the Blasius profile we have

EQM ∼ exp(−2κBLk̄
4t̄),

where κBL = π|U ′′′s ∆U2∞(U ′s)−3| ≈ 8.
Comparing two functions exp(−2κk̄3t̄) and k̄−2t̄−2, it is easy see that for sufficiently

small k̄ they intersect twice, say, at t̄1 and t̄2. The interval where the QM contribution
dominates, i.e. EQM � Etail, is bounded by these points: t̄1 � t̄ � t̄2. The intersec-
tion points can be expressed via the Lambert functions (solutions of the equation
x exp(x) = y), however, in the limit of small k̄ that we are interested in, it is sufficient
to use simple estimates:

t̄1 ∼ k̄−1, t̄2 ∼ k̄−3 log(1/k̄). (4.19)

Now we can also quantify how strongly the EQM part dominates:

R =
EQM

Etail

, Rmax ∼ Rmean =
1

t̄2 − t̄1
∫ t̄2

t̄1

R dt ∼ k̄−4. (4.20)

Thus, we have shown that in the generic case for small k̄ there is indeed a wide
interval where the contribution due to the pole strongly dominates in the integral
(energy) sense.

Note that, for the degenerate cases (U ′′s = 0), with the Blasius profile being the
most notable example, both the interval of the quasi-mode dominance is obviously
wider

t̄1 ∼ k̄−1, t̄2 ∼ k̄−4 log(1/k̄), (4.21)
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and the quasi-mode is even more pronounced

R =
EQM

Etail

, Rmean =
1

t̄2 − t̄1
∫ t̄2

t̄1

R dt ∼ k̄−6. (4.22)

The asymptotic analysis of evolution of an initial perturbation that we carried out,
provides a clear picture of it, especially transparent in terms of E(t). First, there is an
‘initial transition’ period t̄ . k̄−1, when the asymptotic formulae derived are not yet
valid, while the initial disturbance energy E(t) remains of the order of unity. Then,
in the intermediate asymptotics interval k̄−1 � t̄� k̄−3 log(1/k̄), E(t) is very close to
EQM and is, therefore, decaying as exp(−2κk̄3t̄ ). At the end of the interval, the energy

is O(k̄−4) of the initial energy. At even greater times, E(t) is no longer close to EQM

and owing to the tail contribution becoming more and more noticeable, its decay
gradually tends to a final stage of the expected t−2 decay (see plots in figure 7).

We note that behaviour of almost any other integral characteristics of the pertur-
bation, except enstrophy, is qualitatively the same.

5. Beyond the long-wave asymptotics
Our asymptotic analysis was based on the long-wave approximation and, thus,

employed heavily the smallness of k̄. We have established the existence of the specific
pole lying close to the real axis on a particular sheet of complex plane c for an
arbitrary boundary-layer-type shear flow. We also showed that the contribution due
to this pole to the solution of arbitrary initial problem, the quasi-mode, prevails in
the wide time interval found asymptotically.

In this section, we address the fundamental question: What happens beyond the
range of applicability of the derived asymptotic formulae?

In § 5.1, we employ numerics to find the exact positions of the pole on complex
plane c for a number of profiles of interest for applications. We check our asymptotic
theory and obtain a new insight into the role of this singularity. In § 5.2, we investigate
the evolutionary problem numerically and find that the asymptotic theory works fairly
well.

5.1. Quasi-modes in various flows

The position of the pole on complex plane c specifies both the dispersion relation of
the quasi-mode, i.e. Re c(k), and its characteristic time of existence through Im c(k).
In this subsection, we compute the exact dependence c(k) for a number of profiles of
interest for applications.

In this section, we consider flows normalized for convenience in a uniform way as
follows

Us = 1, (5.1a)

U ′s = −1, (5.1b)

U∞ = 0. (5.1c)

We can always choose the appropriate reference-frame and length units for any
boundary-layer-type flow (if ∆U is finite). Actually, we use lengthscale H for coordi-
nate and Us for the velocity. Thus H = 1 and k = k̄ = ε.

Exponential (EX). The exponential profile U = exp(−z) appears in a number of
real-world problems, say, for boundary layers with suction, but is mostly used as a
model profile having the extreme simplicity as its decisive advantage and justification.
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Figure 4. Integration path for solving the modified Riccati type equation:
(a) Re zc > 0.1; (b) Re zc < 0.1.

Falkner–Skan (FS). The laminar wind-driven surface current profile induced by the
stationary wind stress is described by one of the family of the so-called Falkner–Skan
profiles (Dupont & Caulliez 1993). In the normalized form U(z) = FFS(z), where
FFS(z) = f′(zλFS)/λFS where λFS ≈ 1.298 is introduced to satisfy convention (5.1),
while f(z) is the solution of the boundary-value problem

3f′′′ + 2ff′′ − (f′)2 = 0,
f(0) = 0, f′′(0) = −1, f′(ζ → +∞)→ 0.

(5.2)

Blasius (BS). The Blasius profile given in most textbooks on hydrodynamics in its
normalized form U(z) = FBS(z) = f′(zλBS)/λBS where λBS ≈ 1.821 is expressed via the
solution f(z) of similar boundary-value problems

−f′′′ + 3ff′′ − (f′)2 = 0,
f(0) = 0, f′(0) = −1, f′(ζ → +∞)→ 0.

(5.3)

Logarithmic (LG). The logarithmic profile U = 1 − log(1 + z) describes turbulent
flows near a rough infinite wall (e.g. Tennekes & Lumley 1972). It diverges at infinity
and therefore does not fit into the class of profiles that we applied our asymptotic
analysis to and does not satisfy (5.1c). We, nevertheless, consider it here only to show
that the quasi-mode concept remains relevant for such a class of flows as well.

For each converging flow in the list we also provide the explicit expressions for the
long-wave asymptotics for the pole summarized below.

EX: The exponential profile: U = exp(z) , cp = 1− k − iκEXk
2, κEX = π.

FS: The Falkner–Skan profile: cp = 1− k − iκFSk
2, κFS = π0.726 . . . = 2.28 . . . .

BS: The Blasius profile: cp = 1− k − iκBSk
3, κBS = π2.54 . . . = 7.99.

To compute the position of the pole, we transform the Rayleigh equation into the
modified Riccati type equation by the substitution tan(α(z)) = ψ′/ψ:

α′ + 1 = cos2 α[1 + k2 + (U − c)−1U ′′]. (5.4a)

The equation is integrated numerically as an initial problem with the initial condition:

tan(α(z∞)) = −k, (5.4b)

along the path lying on the complex z-plane shown in figure 4.
The path includes two (if Re zc > 0.1) or three segments encompassing the pole

at a distance not closer than 0.1 (this particular value is chosen for optimizing the
numerical routine). The initial point z∞ instead of infinity is taken to be (k−2 + 52)1/2

(this value is found by trial and error to ensure the desired accuracy of 10−8). The
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‘no-flux’ boundary condition at the surface ψ = 0 implies tan α(z = 0) = ∞ which it
is convenient to present as

cos(α(z = 0; c)) = 0. (5.5)

The equation (5.5) has been solved with respect to c. The results of the computations
are presented in figure 5.

It is easy to see that for all profiles the pole tends fast to its asymptotic position as
k decreases. Note, that the asymptotics work reasonably well up to moderate values
of k, especially for the Blasius flow.

An alternative view of the behaviour of cp(k) yields a picture of the trajectories of the
pole on the c-plane with k varying from 0 to ∞ presented in figure 6. The trajectories
have similar shape but differ somewhat in parameters. The pole trajectories for all
flows start at k = 0 at the point c = Us and as k grows form a loop. The loop differs in
size and slightly in shape for the different profiles, however, all trajectories tend to the
same initial point c = Us when k tends to infinity. At certain k (different for different
flows), the pole intersects the cut drawn from the point Us, then residue at the pole
loses any physical sense. However, well before the intersection, the pole acquires an
essential negative imaginary part and may not be taken into account in evolutionary
problems because of strong decay of the relevant wavenumbers. Nevertheless, we
stress that the absolute value of Im cp(k) does not grow infinitely as our asymptotics
suggest, but is bounded from above by a finite value.
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Discussion

The results of the computations summarized above in figures 5 and 6 enable us
to make a number of important conclusions. First, it was found that the analytical
asymptotics work quite well for small to moderate k. Secondly, we traced the pole
position beyond the small k range. The question as to whether the quasi-modes
linked to the pole are of importance in the evolutionary problems is almost entirely
determined by the decay rate |Im cp(k)k|. In the generic situation, the decay rate
sharply increases with k and, therefore, only the range of small k covered by the
analytical asymptotics should be taken into account. Thus, the long-wave asymptotics
describe the evolution of a wide class of initial perturbations, not necessarily the long-
wave ones. (Evolutionary problems for non-monochromatic initial perturbations with
broad spectra are considered in detail in the subsequent Part 2.) This fact provides
an a posteriori justification of our analytical approach.

For some specific profiles the decay rate |Im cp(k)| might prove to be very small even
in the range of intermediate k, i.e. k ∼ O(1). Since |Im cp(k)| is roughly proportional
to U ′′r , then for a flow having a segment of low curvature in the profile, the pole can
‘float up’ for intermediate k. Such flows require a special consideration which goes
beyond the scope of the present work focused on the generic situations only.

5.2. Direct numerical simulation of the initial problem

To check the predictions of the asymptotic theory for the evolutionary problem the
only way is to apply direct numerical simulation. Since the direct simulations are
time-expensive, we confined ourselves to consideration of one particular basic flow
profile and one shape of initial perturbation. The initial value problem (2.4) has
been solved numerically for a set of different wavenumbers for the FS-profile and a
Gaussian initial vorticity distribution

ω0 = exp{−z2}. (5.6)
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The pseudospectral method is applied, based on the Chebyshev polynomials expansion
with respect to z (Canuto et al. 1987). For integration with respect to time, the Runge–
Kutta method with controlled time step is used.

We trace the evolution of the energy density of the initial Gaussian perturbation
for a number of different and not necessarily small k and compare the outcome with
the predictions of our asymptotic theory.

First, we write down the explicit expressions for the initial velocity field and energy
for small k

w0 ≈ − 1
2
ik[1− exp(−z2) +

√
πz erfc(z)] + O(k2), (5.7a)

u0 ≈ 1
2

√
π erfc(z) + O(k), (5.7b)

E(0) ≈ 1

4

π

4
0.33 + O(k) ' 0.0649 + O(k). (5.7c)

Thus, w0(z ∼ 1) ≈ − 1
2
ik.

Then we single out the contribution of the pole at the initial moment, taking into
account that for the chosen initial vorticity

∫ ∞
0
ω0 dz = 1

2

√
π:

wp ≈ − 1
2
ik
√
π(1−Uz), (5.8a)

up ≈ 1
2

√
πU ′z, (5.8b)

Ep ≈ 1

4

π

4
0.33. (5.8c)

In the long-wave approximations the quasi-mode energy obviously decays as
exp(−2cikt). The results of the comparisons with the direct computations are summar-
ized in figure 7, where plots of the disturbance energy evolution E(t) are presented in
logarithmic scale for four different k.

The plots clearly show excellent agreement with the asymptotic theory for k up to
O 10−1. For moderate k, say k ≈ 0.3− 0.4, the analytic formulae proved to be helpful
for a qualitative description.

6. Discussion
We begin with a brief summary of the main results and then discuss their implica-

tions in a wider context.

6.1. Conclusions

We have solved Cauchy’s problem for the spatially monochromatic smooth initial
perturbation of a boundary-layer-type flow without inflection points. A rich variety
of interesting cases is found to be possible; however, we focus our attention exclusively
on the generic situation. We have shown that a generic initial perturbation evolves
according to a universal scenario, provided its wavelength is long compared to the
boundary-layer thickness. First, there is a relatively short initial transition period,
when the ‘phase mixing’ of continuous spectrum harmonics of initial perturbation
takes place and there is no universal asymptotics. In this period the perturbation
amplitude can increase or decrease, remaining of the same order in ε. Then follows a
long time interval dominated by the quasi-mode, where the velocity field perturbation
behaves as if it were indeed a single discrete spectrum mode. The mode is weakly
decaying as exp(−ε3t). The final stage of evolution occurs after the eventual decay of
the quasi-mode: the perturbation velocity field can no longer be characterized by any
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certain vertical structure, although the field amplitude decay does obey the universal
t−2 law as t → ∞. We found explicit analytic formulae both for the time interval
and the degree of the quasi-mode dominance (see (4.19), (4.21), (4.20), (4.22)). Direct
numerical simulation confirmed the analytically found scenario of field evolution
outlined above (see figure 7).

We recall that from the mathematical viewpoint the quasi-mode understood as a
solution due to the residue in the Landau pole is not a true discrete mode of the
problem since it contains a velocity jump in the critical layer (4.4) and therefore does
not satisfy the Rayleigh equation at this point. We have shown that for the flows
under consideration these jumps are very small, and therefore the quasi-mode has no
singularities in the velocity field to the leading order. This makes the quasi-modes
a practical tool of investigation. We stress that the solution of the evolutionary
problem remains always smooth since the critical layer jump is compensated by that
of the non-modal part of the solution. We have shown that the Landau damping is
asymptotically small for long-wave perturbations but sharply increases with k; this
implies that long-wave components should prevail at large time for almost arbitrary,
not necessarily long-wave, perturbations. We conclude that the results provide a solid
mathematical foundation for applying the quasi-mode concept to boundary-layer type
shear flows.

6.2. Some implications

6.2.1. Piecewise linear approximations and method of contour dynamics

The concept of quasi-modes sheds new light on the foundations of one of the
widely used methods in hydrodynamics, the so-called piecewise linear approximation.
The method was first introduced probably by Rayleigh (1892), and then flourished
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in the computer era. The great gain in simplicity is achieved by approximating the
real smooth velocity profiles by piecewise linear ones (that is representing the flow
as a set of the constant vorticity layers). Notice that the overwhelming part of the
linear and especially nonlinear problems solved for atmosphere and ocean flows
is based just on this approximation (e.g. Gossard & Hooke 1975; Pedlosky 1982).
In the context of linear and weakly nonlinear problems the required solutions in
each layer are expressed via elementary functions. The method of contour dynamics
(e.g. Pullin 1991), often used for simulations of two-dimensional flows, is a strongly
nonlinear generalization of the piecewise linear approach, the flow is split into regions
of constant vorticity and the system of equations describing the dynamics of their
boundaries is solved numerically.

In spite of the long history and wide use of the method, a number of fundamental
questions have not yet been satisfactorily answered. We list just a few: Why and
when does this method work?; How many breaks should be taken?; When is the
solution structurally stable with respect to the profile smoothing?; How many modes
do really exist in the original smooth profile flow, if the number of modes in its piece-
wise linear approximation is equal to the number of breaks specified by the order
of approximation? The quasi-mode concept enables us to address, at least partially,
these questions.

First consider how well piecewise linear approximations with different numbers of
breaks describe spectral properties of a shear flow taking FS-flow (5.2) as a charac-
teristic example. We will refer to an N-break approximation as a PLN approximation.
In figure 8, dispersion curves are plotted for the FS-flow for the real part of the
quasi-eigen mode, for a one-break approximation and for a 20-break approximation.

We have earlier established that the quasi-mode dispersion law found in § 3.3
adequately describes spectral properties of the dominant perturbation of the flow.
We can easily see from figure 8 that the PL1 approximation qualitatively (and
quantitatively for long wave kH . 0.1) provides c(k) close to that of the quasi-mode.
At the same time, we have 20 dispersion curves for the PL20 model and none of them
describes adequately the true dispersion. Note, that the phase velocity of every mode
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varies gradually in the limits of velocities of the particular layer ([Un−1, Un]) and
large parts of these curves are horizontal and close to the velocities in the breaks Un

(n = 1, . . . , N). The dispersion curves provided by the PL20 model are similar to the
plots of split frequencies for oscillators with two degrees of freedom. Non-horizontal
parts of two modes approximately describe the true dispersion in certain narrow
intervals in k.

Thus, in the context of spectral properties, the conclusion is that only the one-break
model is adequate. Although its applicability is confined to long-wave perturbations,
this is the range that matters in evolutionary problems.

Now we test the ability of various models to describe evolution of an initial
perturbation. Let the initial disturbance be prescribed by (5.6). Within the framework
of the PLN model we, in principle, can describe any smooth perturbation; however,
it is strongly preferable to deal with perturbations that can be created entirely by
distortion of the interfaces between the layers. Then the vorticity of the layer is
conserved, and the strong nonlinear generalization, including the contour dynamics
method seems to be straightforward. Such a perturbation can be presented as a sum
of discret spectrum (DS) modes only. In the opposite case, the additional vorticity
should be inserted into the flow and when solving a nonlinear evolution problem
we have to consider the continuous spectrum (CS) modes and their interaction with
DS-modes as well. However, if, as most other authors do, we take the first option,
i.e. consider a perturbation composed entirely of the DS-modes, we cannot satisfy
exactly arbitrary initial conditions, for example (5.6). We take the best approximation
to this initial perturbation in the following sense∫ +∞

0

|w0,PLN
(z)− w0(z)|2 + |u0,PLN

(z)− u0(z)|2 dz → min .

Eventually, upon having specified the initial condition in terms of an N-break approx-
imation, we simulate the field evolution by direct integration of the corresponding set
of ODEs. Choosing again the field energy as the most representative parameter, we
plot in figure 9 the resulting energy evolution with time for the case kH = 0.2 and
different numbers of breaks. We can see that the PL2–PL5 models do not describe
the evolution of the perturbation energy. The PL20 model describes well at least an
initial part of the intermediate asymptotics, while the PL100 model is able to describe
this asymptotics regime almost completely, giving, however, a qualitatively wrong
prediction for larger times: the perturbation grows rather than decreases. Only the
PL300 model is able to describe satisfactorily all the stages of the evolution, although
at the later stages the discrepancy increases and becomes apparent. Moreover, it
is worth noting that PL300 works so well only due to a specially optimized set of
breaks approximating the basic profile (the density of the break distribution increases
towards the surface), otherwise, the curves would diverge much earlier or it would
require many more breaks to obtain the same results.

Notice that the PL1 model gives constant energy and hence, at first sight, cannot
be a satisfactory model in this sense. Nevertheless, if we approximate the profile by
a piecewise linear function with one break (see figure 1a) and make use of the well-
known dispersion of the mode for sufficiently small kH , this enables us to determine
the position of its critical layer and then eventually find the decay rate of this mode
due to the Landau damping (e.g. Landau 1946; Briggs et al. 1970; Rabinovich &
Trubetstkov 1991)

ci ≈ −πk2H4U ′′s .
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Then the single mode, with this correction prompted by the acquired understanding of
quasi-modes taken into account, describes satisfactorily the evolution and dispersion
of the eigen-mode of the flow.

In this sense, contrary to common opinion ‘the more the better’, one break proves
to be much better than several: it does not add extra modes, it describes the
dispersion reasonably well and, after a simple correction, the attenuation. Several
breaks describe everything quite badly. The models with very large number of breaks
N tend to describe the evolution rather well, provided N is large enough; however, for
this case DS-modes in PLN profile play the role of CS modes in the smooth profile.

Although the comparison was carried out for a single profile of shear flow without
inflection points, nevertheless the acquired understanding enables us to suggest what
might be the recipe for untested yet more complicated situations, where there is
more than one DS or quasi-mode. We expect that the number of breaks in the best
piecewise linear approximation for a generic situation should be either very small and
equal to the number of quasi- and DS-modes, and then each break mode would reflect
a certain physical reality, or tend to infinity. In the latter case DS-modes in such a
model would mimic CS-modes. Turning to the contour dynamics method we note
that the method is usually applied for strongly nonlinear situations, where neglected
CS-modes ‘filtered out’ by the N-mode approximation of the initial distribution are
expected to prove essential. This implies that there is no room for small N models
and only by employing very large N approximations, where DS-modes can substitute
CS spectrum, we can expect a good description of strongly nonlinear processes. This
conclusion is in agreement with the results of simulations by Legras & Dritschel
(1993).

6.2.2. The next steps and beyond

The present work was confined to the initial problem for two-dimensional monochro-
matic inviscid perturbations of boundary-layer-type shear flows. In work underway
we extend our analysis in the following directions.
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Viscosity: we show that the quasi-mode is structurally stable with respect to in-
troducing small viscosity, i.e. that the quasi-mode turns into the corresponding true
mode of the Orr–Sommerfeld equation.

Broad spatial spectrum: we show that quasi-mode is the true asymptotics for per-
turbations with broad spatial spectrum, rather than an intermediate asymptotics as it
is the case for the spatially harmonic perturbations. Three-dimensional perturbations
of two-dimensional flows and the range of validity of their linear description due to
accumulation of nonlinear effects will be also considered.

Although the implications of the essentially linear concept for nonlinear and
especially weakly nonlinear problems are numerous, they can be grouped along a few
major lines.

For intrinsic dynamics of generic inviscid shear flows it would be impossible to
develop a weakly nonlinear description since there is a fundamental problem. Not
only has one to consider a continuum of the continuous spectrum modes to describe
any smooth perturbation, these modes, because of their singularity, do not admit a
weakly nonlinear description. Employing the quasi-mode concept one circumvents
this problem at least for boundary-layer flows as the quasi-mode has no singularities
to the leading order. This allows one to develop models able to describe transition
from the linear to the nonlinear regime and, in particular, the formation and dynamics
of solitons (Shrira 1989; Shrira & Voronovich 1996).

The quasi-mode concept is instrumental in understanding the interaction of bound-
ary layers with waves of a different nature when they are present in the system (e.g. the
interaction of internal gravity waves in the ocean with surface or bottom boundary
layers (Voronovich et al. 1998a, b), the interaction with gravity waves in free surface
flows subject to gravity, etc.). In particular, it became possible to advance in describing
a nonlinear critical layer for a wideband wavepacket by formulating the problem in
terms of wave–wave interaction, rather than a wave–current one (Voronovich et al.
1998b). Often, quasi-modes can participate in a regular manner in nonlinear resonant
interactions with other modes, forming triads, quartets, cascades, etc.

The study of small perturbation dynamics in shear flows is traditionally linked
with the flow stability aspect and is aimed at understanding of laminar–turbulent
transition. In the quasi-mode line of thought we are aware of two basic nonlinear
mechanisms by virtue of which the presence of a weakly decaying quasi-mode can
lead to instability. The first one is probably responsible for the laminar–turbulent
transition in wind-driven free-surface shear flows: quasi-mode solitary waves emerge
with time from a finite-amplitude initial perturbation, then a strong self-focusing-
type transverse instability leads to wave blow-up (Pelinovsky & Shrira 1995; Shrira
et al. 2002). It can be viewed as a particular case of secondary instability. The
second scenario is based on nonlinear resonant interaction of a quasi-mode with
true modes of different origin, e.g. quasi-modes in either wind or water boundary
layers at an air/water interface can form explosive resonant triads with the surface
gravity–capillary waves (Voronovich & Rybak 1978; Romanova & Shrira 1988). Such
triads tend to blow up even in the absence of linear instability. Although these cases
of explosive instability were found within the framework of simple piecewise-linear
models, use of the QM-concept is essential in judging the relevance of such cases
to reality. Taking into account the decay rate typical of the quasi-modes results in
a certain amplitude threshold of instability which has to be estimated to judge the
importance of the process. (One should, however, be very cautious carrying out such
estimates since even small nonlinearity can change drastically the decay rate of the
quasi-modes and even turn it into zero.) Whether these two mechanisms of nonlinear
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instability exhaust the list and where other situations of physical interest with such
instabilities lie remains an intriguing open question.

It is also worth noting, that for flows without linearly unstable modes (or with very
weak instabilities) an alternative approach to laminar–turbulent transition due to the
so-called ‘non-modal’ or ‘transient’ growth has recently received considerable attention
(e.g. Schmidt & Henningson 2001). The approach is based on the idea that within
the framework of linearized stability problems described by non-normal operators, a
transient amplification of primordial noise up to significant levels might occur, thus
providing an apparent instability. Although the quasi-modes appear in the linearized
stability problems, also described by non-normal operators, the phenomenon of quasi-
modes and the above mentioned mechanisms of quasi-mode-based instabilities are
not directly related to the specific pseudospectra properties essential for significant
growth (Trefethen, Trefethen & Reddy 1993; Schmidt & Henningson 2001). The point
we would like to stress here is that not only are these phenomena not directly related,
but they unfold on different timescales, the transient growth normally precedes the
emergence of the quasi-mode (see, for example, the curve corresponding to kH = 0.1
in the box in figure 7, where a non-spectacular transient growth is discernable for
small t (for a significant transient growth the presence of transverse spatial dimension
is essential).
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first draft of the paper and to an anonymous referee for the key references and helpful
comments. The work was supported by Forbairt Basic Research Grant SC-98-530
and by INTAS (Grant 97-575).

Appendix A. The Green’s function in the long-wave approximation
A.1. The Green’s function via particular solutions of the Rayleigh equation

In this Appendix we present the derivation of the Green’s function specified by
equation (2.12) with the boundary conditions (2.4b, c). As we mentioned, the left-
hand side of (2.12) is the Rayleigh equation for small harmonic disturbances ψ ∝
exp[ik(x− ct)] with phase velocity c:

(∂2
z − k2)ψ − U ′′

U − cψ = 0. (A 1)

Let ψ1 and ψ2 be particular solutions of this equation, ψ1 satisfying the surface
condition (2.4b), ψ2 satisfying the condition at the infinity (2.4c). Then the Green’s
function can be represented in the form

G̃(z|h; c) =


−ψ1(z)ψ2(h)

ikVhW
(z 6 h),

−ψ1(h)ψ2(z)

ikVhW
(z > h),

(A 2)

Here, W = ψ′1ψ2 − ψ′2ψ1 is the Wronskian independent of z.
Thus, the problem reduces to solving the Rayleigh equation. The peculiarity lies

in the fact that, in the present context, c belongs to the integration contour Γ , i.e. it
has a significant positive imaginary part, and, therefore, there are no singularities of
solution of the Rayleigh equation.

To obtain the particular solutions ψ1 and ψ2, two different long-wave expansions
prove to be required.
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A.2. Solution vanishing at the surface. The Heisenberg-type expansion

To proceed, we first cast the Rayleigh equation into the following vector form:

y′ = kAy, y =

[
ψ/Vz

(ψ′Vz − ψV ′z)/k
]
, A =

[
0 V−2

z

V 2
z 0

]
.

It is easy to check that if a vector y is given in the point z0 then the solution at any
point z can be found using a matrix F independent of the initial conditions for y,
satisfying the matrix ordinary differential equation and equal to the identity matrix
in z0:

y(z) = F (z0|z)y(z0), (A 3a)

F ′ = kAF , (A 3b)

F (z0|z0) = I ≡
[

1 0
0 1

]
. (A 3c)

The following properties of the matrix F must be noted:
(i) det F (z0|z) ≡ 1;
(ii) F (z0|z) = F (z0|z1)F (z1|z);

(iii) F (z|z0) = F−1(z0|z) =

[
F22(z0|z) −F21(z0|z)
−F12(z0|z) F11(z0|z)

]
;

(iv) F (0|z) =

[
cosh kz V−2

z sinh kz

V 2
z sinh kz cosh kz

]
if Vz ≡ const.

Relations (A 3b, c) can be written as an integral matrix equation

F (z0|z) = I + k

∫ z

z0

A(z′) F (z0|z′) dz′ (A 4)

that admits subsequent iterations for small k (in fact, we are employing the smallness
of ε = kH , but it is convenient at this stage to keep the dimensional variables):

F = I + kF1 + k2F2 + · · · . (A 5)

It is possible to show that this series converges absolutely but not uniformly in z
for infinite interval z ∈ [0,+∞). Here we do not use the absolute convergence. An
example of the non-uniformity is most easily seen in the case of z-independent flow.

To order k, the long-wave approximation of the matrix F for an arbitrary flow
takes the form:

F =

 1 k

∫ z

z0

V−2
h dh

k

∫ z

z0

V 2
h dh 1

+ O(k2). (A 6)

The solution ψ1, that we are looking for, can then be presented via two components
of the matrix F

ψ1(z) = VzF12(0|z) (A 7a)

ψ′1(z) = V ′zF12(0|z) + kV−1
z F22(0|z). (A 7b)

A.3. Solution decaying at infinity. Miles’s approximation

As the expansion (A 5) does not converge uniformly (the greater z, the more terms of
the series are necessary for a satisfactory approximation), we cannot apply it to obtain



164 V. I. Shrira and I. A. Sazonov

the second particular solution ψ2 decaying at infinity. We use here another expansion.
The latter, however, is not convenient for describing the solutions vanishing at the
surface. We look for the decaying solution in the form

ψ2 = exp

[∫ z

0

f(z1) dz1

]
, (A 8)

where f(z) = ψ′/ψ is the function satisfying the Riccati equation

f′ + f2 = k2 +
V ′′z
Vz
, (A 9)

obtained after substitution of (A 8) into (A 1). The boundary condition for f specified
by (2.4c) is

f(z→+∞)→ −k.
Equation (A 9) admits uniform expansion for z ∈ [0,+∞). Actually, if we seek the
solution in the form f = f0 + kV 2∞V−2

z g we find for k = 0: f0 = V ′z/Vz . Then we find
that the auxiliary function g satisfies the equation (function g coincides within factor
−k with the function Ω introduced by Miles (1957) for similar purposes)

g′ = k

[
V 2
z

V 2∞
− g2V

2∞
V 2
z

]
, (A 10)

(compare with (A 3b)) and the condition

g(z → +∞)→ −1. (A 11)

Equation (A 10) and condition (A 11) can be united into an integral equation

g = −1 + k

∫ z

∞

[
V 2
h

V 2∞
− g2V

2∞
V 2
h

]
dh, (A 12)

(compare with (A 4)) which admits the subsequent approximations with respect to
small k for the limited (i.e. V∞ 6= ±∞, Vs 6= ±∞) flows:

g = g0 + kg1 + · · · ,

g0 = −1, g1 =

∫ z

∞

[
V 2
h

V 2∞
− V 2∞
V 2
h

]
dh, . . . .

Function g1 and the higher-order functions gn decay as z → ∞ and are bounded if
c ∈ Γ . This proves uniform convergence.

Finally, we present the solution ψ2 and its derivative as

ψ2(z) = Vz E(0|z), (A 13a)

ψ′2(z) =
[
V ′ − k V 2

∞V
−1
z − k2V 2

∞V
−1
z χ
]
E(0|z), (A 13b)

E(0|z) = exp

{
−k V 2

∞

∫ z

0

V−2
h dh− k2V 2

∞

∫ z

0

V−2
h χ dh

}
, (A 13c)

χ(z) = k−1(g + 1) = O(k0). (A 13d)

A.4. Green’s function in terms of the matrix F and the decaying solution

The Wronskian of the derived solutions (A 7) and (A 13) is

W = kE(0|z)[F22(0|z) + V 2
∞F12(0|z)(1 + kχ(z))]. (A 14)



Quasi-modes in boundary-layer-type flows. Part 1 165

As the exact Wronskian does not depend on z, we can substitute instead of z any
value, say B. Since the accuracy of the solutions ψ1 and ψ2 is not uniform in z and
is decreasing for very large and very small small z, respectively, it is appropriate to
choose B to be O(1), where both ψ1 and ψ2 have good accuracy. Thus, we assume:
kB � 1, B/H � kH . B is a fictitious, auxiliary parameter and, as we show below,
any dependence on B drops out from the final formulae, meanwhile we keep it for
our intermediate manipulations.

Substituting (A 7) and (A 13) into (A 2) we obtain the Green’s function in the form

ikG̃ =


−VzF12(0|z)E(B|h)

k[F22(0|B) + V 2∞F12(0|B)(1 + kχ(B))]
, z 6 h

−VzF12(0|h)E(B|z)
k[F22(0|B) + V 2∞F12(0|B)(1 + kχ(B))]

, z > h,

(A 15)

where B is a point where the Wronskian is calculated.
In this approximation we substitute functions F21, F22, E by their expansions

F12(0|z) = kIz + O(k3), (A 16a)

F22(0|z) = 1 + O(k2), (A 16b)

E(B|z) = 1− kV 2
∞(Iz − IB) + O(k2), (A 16c)

and neglect the auxiliary function χ specified by (A 13d) which enters into O(k2) terms
only.

Then the Green’s function takes the following approximate form:

ikG̃ ∼=


−Vz Iz [1 + kV 2∞(IB − Ih)]

1 + kV 2∞IB
, z 6 h

−Vz Ih[1 + kV 2∞(IB − Iz)]
1 + kV 2∞IB

, z > h,

(A 17)

which can be rewritten in a more compact and convenient form (3.1).
A few remarks seems to be helpful in elucidating the approximations and compro-

mises resulted in the compactness of the presentation (A 17), (3.1).
We are primarily interested in the evolution of the field components u, v and ω

given by a convolution of the Green’s function and the initial vorticity ω0 localized
in the layer z . H (see § 2.3). We recall that our expansion in k is not uniform in z, h;
however we can tolerate considerable deviations of the derived expressions (A 17) as
function of z and h from the exact Green’s function, as long as these deviations do
not contribute to the convolution in the main order. In particular, we can allow a
large deviation in a very narrow domain. Say, owing to poor convergence of ψ2 for
small z the discrepancy between the found and exact Green’s functions is not small,
but it can be shown that its contribution in the convolution is negligible. The fact that
ω0 is effectively zero outside the boundary layer z . H enables us to relax somewhat
our requirements on the Green’s function behaviour for large z (strictly speaking the
Green’s function must satisfy (2.4c)). Its deviation in the large-z asymptotics results
from the poor convergency of ψ1 at large z. We can safely ignore the discrepancy
for the solution within the boundary layer: z, h . H . Outside the boundary layer this
discrepancy results in unphysical behaviour of some field components: w does not
decay when z → ∞ (see (4.7)). The proper large-z asymptotics can be obtained by
applying the multiple scale technique, i.e. by considering an expansion in k assuming
in each order the functions to be dependent on two independent variables z and
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ζ ≡ (kH)z. This kind of procedure was carried out in Shrira (1989). For the problem
under consideration the procedure would have resulted merely in an exponential factor
exp(−kz) which is of importance for large z for only one field component: vertical
velocity w (other field components, being localized within the layer, are unaffected by
this factor). However, since our main interest is in the processes within the boundary
layer, we did not find the use of a more sophisticated procedure justified. We stress
that the main results of the paper do not depend on the presence or absence of
this factor. Only large-z asymptotics of w is affected, but w is playing little role in
the field dynamics. However, to preserve the physical adequacy of the solution for
w in the whole domain we merely inserted the exponential factor exp(−kz) in (4.7).
Comparison with the ‘exact’ numerical solution shows that such a crude amendment
describes well all vertical dependences over the whole domain.

Appendix B. Contributions of the Green’s function singularities
Here, we present the detailed analysis of the contributions due to the singularities

Uz , Us and Uh of the Green’s function listed in table 1. We begin with the singularity
Us as the simplest one.

B.1. Contribution of the point c = Us

In the vicinity of the point c = Us, the leading term of the asymptotics is

Gs =
k

2π

U ′′s Vsz
k2U ′s∆U4

∫
Γs

V 2
s logVs exp(−ikct) dc,

where Vsz = Us−Uz . Taking into account the fact that the branches of the logarithmic
functions at the opposite sides of the cut differ by the term 2πi, we can take it explicitly:

Gs =
k

2π

U ′′s Vsz
k2U ′s∆U4

∫ Us+i∞

Us

V 2
s (2πi) exp(−ikct) dc = − 2U ′′s Vsz

k4t3U ′s∆U4
exp(−ikUst). (B 1)

To evaluate the characteristic time when these asymptotics are valid we similarly
find the next term in the expansion in Vs, that is

G̃(1)
s =

2iVz(U
′′
s )2

k2(U ′s)3∆U4
V 3
s log2 Vs ⇒ G(1)

s ∼ (U ′′s )2Vsz

k5t4(U ′s)3∆U4
log(U ′st) exp(−ikUst). (B 2)

Comparing (B 1) and (B 2), we find that they become of the same order at t = ts
given by (4.16). Finally, calculating the convolution of Gs with the initial disturbance
ω0 we find the contribution of this singularity to velocity and vorticity components
given by (4.15).

B.2. Contribution of the point c = Uz

The leading term of the Green’s function G̃ in the vicinity of the point c = Uz for
z � zr, where U(zr) = Re c, takes the form

G̃z =
U ′′z

ik(U ′z)3
Vz logVz θ(h− z),

where θ(z) is the Heaviside unit-step function. Performing integration similar to the
previous case, we obtain

Gz ' U ′′z
k2t2(U ′z)3

exp(−ikUzt)θ(h− z). (B 3)
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To evaluate the characteristic time when these asymptotics become valid we have
to consider the next term in the expansion of F21(0|z) with respect to k, which yields

G̃(1)
z ' Fzk

2U ′′z
6i(U ′z)5

V 3
z logVz θ(h− z) ⇒ G(1)

z ' FzU
′′
s

ik2t4(U ′s)5
exp(−ikUzt) θ(h− z). (B 4)

Comparing (B 3) and (B 4), we find that the characteristic time tz is (4.10) that is
much smaller than ts.

If z ∼ zr , the second term in (4.1) becomes essential (see table 1). In the case h� zr ,
we can approximate integral Ih(Uz) by its leading term (VsU

′
s)
−1 (see (3.3)). Changing

the variables σ(c) = i(c−Uz), we reduce the inverse Laplace transform to the integral:

Gaz =
−2πiU ′′r ∆U2

U ′4s
exp(−iktUz)

∫ +∞

0

σ dσ

σ + i(Uz−cp) exp(−ktσ),

which can be taken in the explicit form via the integral exponent function:

Gaz ' ∆U2U ′′r
i(U ′s)4

[
exp(−iktUz)

t
− ik(Uz−cp)E1[ikt(Uz−cp)] exp(−iktcp)

]
(B 5)

If h ∼ zr , the term −(VhU
′
h)
−1 in the approximation for Ih(Uz) becomes essential,

so we also have to take into account the pole (c−Uh)
−1.

Although Gaz decays more slowly than the leading term (B 4), it does not dominate
until t̄ ∼ k̄−2. However, since while finding the convolution, we have to integrate Gz
with respect to h, it is possible to show that the contribution of the layer h ∼ zr is
small and therefore is neglected throughout our study. It must be taken into account
only if the initial vorticity is localized in the layer z ∼ zr , a situation interesting for
its own merit, but not generic, and hence lying beyond the scope of the present work.

Thus, assuming that the contribution of the layer h . zr is small, we finally arrive
at the solution for the velocity components and vorticity presented by (4.8)–(4.9).

If t and z satisfy the inequality

|kt(Uz − cp)| � 1, (B 6)

we can use the known asymptotics of E1 for large argument and simplify the formulae
for waz and uaz:

waz ≈ iU ′′s ∆U2

t2(U ′s)4(Uz − cp) exp(−iktUz)

∫ ∞
0

ω0(h) dh, (B 7)

uaz ≈ U ′′s ∆U2

t(U ′s)3(Uz − cp) exp(−iktUz)

∫ ∞
0

ω0(h) dh. (B 8)

Notice that, just in the critical layer, this inequality is valid if t̄ � k̄−3 (̄t � k̄−4 for
the Blasius profile). The term containing function E1 becomes much smaller than the
second term in (4.9).

Summarizing, we have found that the contribution due to the critical layer singu-
larity c = Uz decays as t−2 in terms of ψ or w. However, near the critical layer, it
decays more slowly for a finite but rather long time. This causes the domination of
this solution in the vicinity of the critical layer for sufficiently long time. Solution uz
decays as a whole as t−1, but it also has a slower intermediate decay in the vicinity
of the critical layer, and, as a consequence, this part of the solution dominates for
sufficiently large time. The velocity component jumps behave differently; they decay
exponentially as exp{−kcit} (see (4.4)). The vorticity disturbance does not decay at
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all, but due to the shear becomes more and more oscillating with respect to z, in
virtue of the factor exp{−iUzkt}.

B.3. Contribution of the point c = Uh

This point contains two singularities simultaneously: the pole and the logarithmic
branch point {

1

Vh
+

U ′′h
(U ′h)2

logVh

}{
θ(z−h) +

kV 2∞
(c−cp)VsIz

}
Vz

ikU ′h
.

The residue in the pole V−1
h gives a non-decaying contribution into Gh. Thus, for

infinitely large time, the Green’s function tends to a harmonic wave representing the
continuous spectrum mode ψCS (z|h) centred at the critical layer z = h:

Gh(t→∞)→ ψCS ,

ψCS =
1

U ′h

[
Vzθ(z− h) + k

V 2∞Vs
(c− cp)VzIz

]∣∣∣∣
c=Uh

exp(−ikUht).

This field is singular and satisfies the Rayleigh equation as a distribution (in the
generalized sense). Besides, it satisfies both boundary conditions. The first term in
brackets gives the singularity of clear nature: a break for ψCS (a jump for uCS , the
Dirac delta function for ωCS , respectively). If we pull out the singularities from the
integral Iz of the second term and retain the singular term with Vz only, choosing the
right branch of the logarithmic function, we obtain:

ψCS '
[
Vz

U ′h
θ(z− h)− kV 2∞Vs

(c− cp)
U ′′h

(U ′h)4
Vz log |Vz|

]∣∣∣∣
c=Uh

exp(−ikUht),

ωCS '
[
δ(z− h)− U ′′z

U ′h
θ(z− h)− kV 2∞Vs

(c− cp)
U ′′h

(U ′h)3
PU

′′
z

Vz

]∣∣∣∣
c=Uh

exp(−ikUht).

Here, thePz−1 distribution means that the principal value of integral
∫
φ(z)Pz−1 dz =

PV
∫
φ(z)z−1 dz is taken for any smooth finite function φ(z).

Note, that the coefficients in the first and second term become of the same order
when h ≈ zr . Actually, if h = zr (Uh = cr), then Vs/(c − cp)|cr ≈ (Us − cr)/(−ici) ≈
−ik−1(U ′s)3∆U−2∞ (U ′′r )−1π−1 = O(k−1) (or O(k−2) for the Blasius profile).

Now we consider the decaying part of the solution (contribution of the logVh
singularity) and show that we can neglect it in our study. We denote this part by Glog

h :

G
log
h =

U ′′h
ik(U ′h)3

Vzh

t
θ(z − h) exp(−ikUht) + G

log,cp
h ,

G
log,cp
h =

U ′′h
ik(U ′h)3

[
kV 2∞
t

(
1

U ′z
− 1

U ′s

)
exp(−ikUht)

−ik2

[(
cp

U ′z
− cp

U ′s

)
−
(
Us

U ′z
− Uz

U ′s

)]
E1[ikt(Uh − cp)] exp(−ikcpt)

]
,

G
log,cp
h ' U ′′h

ik(U ′h)3

kV 2∞
t

exp(−ikUht)

[(
Uh

U ′z
− Uh

U ′s

)
−
(
Us

U ′z
− Uz

U ′s

)]
.

The second approximate formula for G
log,cp
h is valid when the argument of function
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E1 is large. Thus, Glog
h contains a term which does not decay for t̄ < k̄−3, but it does

not exceed O(k̄2) in terms of ψCS . The leading term in G
log
h is the first one, but it is

also much smaller than ψCS as t̄ & k̄−1. Finally, we conclude that in our asymptotic
study (̄t & k̄−1) we can suffice with

Gh ≈ ψCS .
Now we show that a smooth packet of such waves decays with t by analysing the

convolution integral

ψh =

∫ ∞
0

ψCS (z|h)ω0(h) dh

= −
∫ ∞

0

[
Vzh

U ′h
θ(z−h) +

kVzhIzh

U ′h

V 2∞hVsh
(Uh−cp)

]
ω0(h) exp(−ikUht) dh,

where Izh =
∫ h
z
V−2
Z dZ .

It is possible to show that for large t the main contribution yields integration
in the vicinity of the endpoint h = 0 and singular point h = z. Our assumption
that the initial distribution ω0(h) is sufficiently smooth (see (2.2)) is crucial here. We
denote the contribution of each point by additional superscripts s or z, respectively:
ψh = ψh,s + ψh,z .

To study the contribution of the endpoint h = 0, it is useful to employ the first of
the alternative formulae for the Green’s function (A 17) and assume h < z,

ikG̃ = −Vz Ih(c)1 + kV 2∞(IB − Iz)
1 + kV 2∞IB

. (B 9)

We calculate the residue in the point c = Uh, and obtain another representation for
ψCS more suitable for study in the vicinity of Us:

ψCS = −Vz
U ′h

1 + kV 2∞(IB − Iz)
1 + kV 2∞IB

∣∣∣∣
c=Uh

exp(−ikUht)

≈ Vz

U ′h

Vs

c− cp
∣∣∣∣
c=Uh

exp(−ikUht).

We could deduce this formula from (3.1), however, this needs more care: we hold terms
O(k2) at the pole, but neglect similar-order terms in the numerator. The advantage
of the latter approximation is that we have the explicit factor Vs(Uh) which indicates
that ψCS → 0 as h→ 0. Now, we can present ψh,s as

ψh,s = −
∫ ∞

0

[
Vzh

U ′h

Vsh

Uh − cp
]
ω0(h) exp(−ikUht) dh

We change the variable σ(h) = kt(Us − Uh) and obtain an integral in the limits
[0, ktVs∞]. Then we expand the integrand into series in t−1 taking into account the
expansion

h = − σ

ktU ′s
− σ2

k2t2
U ′′s

2U ′3s
+ · · · .

As a result, we have

ψh,s = − exp(−ikUst)

∫ ktVs∞

0

{
Vszω(0)

t2k2(U ′s)2(Us − cp)σ + O

(
1

t3

)}
exp(iσ) dσ. (B 10)
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As the main contribution into (B 10) is due to the vicinity of σ = 0, we change the
upper limit to infinity. After appropriate deformation of the integration path and
term by term integration, we finally obtain for the leading term

ψh,s =
Vszω0(0)

k3t2U ′s∆U2
exp(−ikUst).

To estimate the characteristic time we derive similarly the second term

ψ
(1)
h,s = [M3,5 +M3,4] exp(−ikUst). (B 11a)

M3,5 = −2i
Vsz

t3k5∆U2
ω(0). (B 11b)

M3,4 =
2i

t3k4(U ′s)2∆U
{[2VszU ′′s − (U ′s)

2]ω(0)− VszU ′sω′(0)}. (B 11c)

Here the leading is term M3,5, it gives estimation (4.12b). We retain the M3,4 term with
ω′, because if extra vorticity is not introduced into the flow, then ω(0) = 0 and the
M3,4 term becomes the leading one.

The contribution of the second endpoint can be studied similarly. The change of
variables σ(h) = kt(Uz −Uh) and intergration eventually yields

ψh,z ' ω0(z)

t2k2(U ′z)2
exp(−ikUzt) + O(t−3).

Calculating the second term and comparing it with the first one we obtain the
characteristic time (4.12a) for this part of the field.
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Heisenberg, W. 1924 Über Stabilität und Turbulenz von Flüssigkeitsströmen. Ann. Phys. Lpz. 74,
577–627.

Kelbert, M. Ya. & Sazonov, I. A. 1996 Pulses and Other Wave Process in Fluids. Kluwer.

Landau, L. D. 1946 On the oscillation of the electronic plasma. J. Phys. USSR 10, 25.

Legras, B. & Dritschel, D. G. 1993 A comparison of the contour surgery and pseudospectral
methods. J. Comput. Phys. 104, 287–302.

Lin, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press.



Quasi-modes in boundary-layer-type flows. Part 1 171

Maslowe, S. A. 1981 Instabilities and the transition in shear flows. In Hydrodynamic Instability and
the Transition to Turbulence. (ed. H. L. Swinney & J. P. Gottlub). Springer.

Miles, J. W. 1957 On the generation of surface waves by shear flows. J. Fluid Mech. 3, 185–204.

Mironov, M. A. & Sazonov, I. A. 1989 To the problem of discrete spectrum wave in a shear flow
with sign conserved curvature of velocity profile. Izv. Akad. Nauk. SSSR. Appl. Math. Mech.
53, 939–947.

Pedley, T. J. & Stephanoff, K. D. 1985 Flow along a channel with a time-dependent indentation
in one wall: the generation of vorticity waves. J. Fluid. Mech. 160, 337–367.

Pedlosky, J. 1982 Geophysical Fluid Dynamics. Springer.

Pelinovsky, D. E. & Shrira, V. I. 1995 Collapse transformation for self-focusing solitary waves in
boundary-layer type shear flows. Phys. Lett. A 206, 95–202.

Pullin, D. I. 1991 Contour dynamics method. Ann. Rev. Fluid Mech. 24, 84–115.

Rabinovich, M. I. & Trubetstkov, D. I. 1991 Oscillations and Waves in Linear and Nonlinear
Systems. Kluwer.

Rayleigh, Lord 1892 On the question of the stability of the flow of fluids. Phil. Mag. 34, 59–70.

Rayleigh, Lord 1894 Theory of Sound, 2nd edn. Macmillan (Dover, NY, 1945, reprint of 2nd edn).

Romanova, N. N. & Shrira, V. I. 1988 Explosive generation of surface waves by wind. Izv. Atmos.
Ocean. Phys. 24, 528–535.

Schecter, D. A., Dubin, D. H. E, Cass, A. C., Driscoll, C. F., Lansky, I. M. & O’Neil, T. M. 2000
Inviscid damping of asymmetries on a two-dimensional vortex. Phys. Fluids 12, 2397–2412.

Schmidt, P. J. & Henningson, D. S. 2001 Stability and Transition in Fluid Flows. Springer.

Shrira, V. I. 1989 On the ‘subsurface’ waves in the oceanic upper mixed layer. Dokl. Akad. Nauk.
SSSR 308, 732–736; Eng. trans. Trans. (Dokl.) USSR Acad. Sci. Earth Sci. Section 308, 276–279.

Shrira, V. I., Ivonin, D. V. & Caulliez, G. 2002 On the laminar–turbulent transition in the
wind-induced free-surface shear flows. J. Fluid Mech. (in preparation).

Shrira, V. I. & Voronovich, V. V. 1996 Nonlinear vorticity waves in the coastal zone. J. Fluid
Mech. 326, 181–203.

Smith, F. T. 1982 On the high Reynolds number theory of laminar flows. IMA J. Appl. Math. 28,
207–281.

Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.

Trefethen, L. N., Trefethen, A. E, Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic Stability
Without Eigenvalues. Science 261, 578–584.

Voronovich, A. G. & Rybak, S. A. 1978 Explosive instability of stratified currents. Dokl. Acad. Sci.
USSR, 239, 1457–1460.

Voronovich, V. V., Pelinovsky, D. E. & Shrira, V. I. 1998b On the internal waves – shear flow
resonance in shallow water. J. Fluid Mech. 354, 209–237.

Voronovich, V. V., Shrira, V. I. & Stepanyants, Yu. A. 1998a Two-dimensional models for
nonlinear vorticity waves in shear flows. Stud. Appl. Maths 100, 1–32.


